
Design Patterns Course

1

Dr Heinz Kabutz Kirk Pepperdine
Java Champions

Essentials of Java
Performance Tuning

Design Patterns Course

2

Our Typical Story

 Customer JoGoSlo Ltd calls us in desperation
– Millions of Rands invested
– Users complain about poor performance

• Customers consider abandoning the project

 Developers in a panic
– 6 man months already invested with no results
– Can almost reproduce the problem
– Still had some ideas what to do
– However management has lost confidence

 We have 5 days to diagnose problem

H

Design Patterns Course

3

Solve All Your Performance Problems

H

Design Patterns Course

4

Authors of Talk

 Kirk Pepperdine
– Engaged around the world to solve Java performance

problems
– http://www.javaperformancetuning.com

H

Design Patterns Course

5

Authors of Talk

 Heinz Kabutz
– The Java Specialists’ Newsletter

– Based in Cape Town, South Africa
– Moving to Crete, Greece towards end of 2006
– http://www.javaspecialists.co.za

K

Design Patterns Course

6

Project in Crisis

 What do people do under stress?
– Decision making skills are much impaired

– Not in learning mode
– Almost impossible to introduce new tools

• Tend to rely on the familiar

 Performance tuning requires own skillsets
– Takes time to learn
– When is a good time to learn CPR?

K

Design Patterns Course

7

Panic Attack

 Lots of finger pointing between groups

 Without real evidence developers start to guess
– Start changing code (that’s what developers do)

• Convert Vector to ArrayList
• Convert String to StringBuffer
• Add more threads
• Add more memory
• Focus on database interactions

– with unpredictable results…

 How do we avoid this?

K

Design Patterns Course

8

Measure,

don’t guess!
K

Design Patterns Course

9

Heap Usage after GC

K

Design Patterns Course

10

Typical Production Environment

K

Design Patterns Course

11

Hardware Resources

K

Design Patterns Course

12

Java Virtual Machine Resources

H

Design Patterns Course

13

Application

H

Design Patterns Course

14

People

 System usage patterns
– What they are doing?

 Rate of doing work?

H

Design Patterns Course

15

Forward Propagation of Actions

 People telling application what to do

 Application tells the JVM what it needs done
– Direct consequence of what the people are asking
– And how application was coded

 JVM tells the hardware what it needs done
– Direct consequence of what the application is asking

– And how JVM was coded and configured

H

Design Patterns Course

16

Backward Propagation of Trouble

 If hardware does not have enough capacity, people will
see bad response times

 If JVM is incorrectly configured, people will see bad
response times

 If application is suffering from contention, people will
see bad response times

 Therefore, the only information you start with is that
people are experiencing poor response times

 What to do next?

H

Design Patterns Course

17

W5 of Investigative Journalism

 Five questions asked by investigators:
– Who ?

• Which resource is exhibiting the problem?
– What ?

• Observation: what do the users see?
– Where ?

• Which layer is exhibiting the problem?
– When ?

• Are there any peculiarities about when the problems occur?
– Why ?

• An explanation of the observation from system perspective

H

Design Patterns Course

18

Typical Production Environment

H

What

Where

Who

Design Patterns Course

19

Plan of Action

 Review or set the performance targets

 Layer by layer performance investigation

 Start with hardware
– Work outward until we find overextended resource

 Need a repeatable test
– Need to know what the people are doing
– Need a test harness
– Need a realistic test environment

K

Design Patterns Course

20

JoGoSlo Test Environment

 Database did not have adequate amount of data
– Solution: Cloned the production database

 Did not have a test harness
– Solution: Introduced Apache JMeter

K

Design Patterns Course

21

Test Harness

 Software that simulates realistic user activity
– Includes normal activity, coffee breaks, user mistakes

– People will use system in unexpected ways

 Good test harness:
– Easily scripted to create our usage patterns

• Randomize test data input
• Ability to randomize think times
• Validate responses from server

– Monitor response times and other system parameters

K

Design Patterns Course

22

Test Harness: Apache JMeter

 Project by Apache Software Foundation
– Open source

 Used extensively for testing web applications
– Can also be applied in other environments

 http://jakarta.apache.org/jmeter/index.html

K

Design Patterns Course

23 K

Design Patterns Course

24

Usage Pattern

Randomized
Timer

Traffic Recorder
K

Design Patterns Course

25

Parameterised
input

K

Design Patterns Course

26

Realistic Test Environment

 Production environment?
– Not desirable and usually not an option

 QA environment should
– Perfectly resemble your production environment

• Data sizes, memory sizes, cache sizes, disk speeds,
network speeds, should be the same

– May need to consider the “when”
• Sometimes have to add external elements to test

 Don’t extrapolate!
– You do not know when you will hit the wall

H

Design Patterns Course

27

Performance Wall

H

When will you hit the wall?

Design Patterns Course

28

Who and Where
 Turn on monitoring of hardware

 Use the “what” to turn on additional low-impact monitoring,
such as:
– Verbose GC logging

• -Xloggc:<filename>
– JDBC logging

• e.g. p6spy
– JNI logging
– RMI logging
– Socket logging

 Beware of Heisenberg Uncertainty!
• “You can’t observe a system without affecting the system”

H

Design Patterns Course

29

Run the Benchmark
 Isolate your system

 Start system from known consistent point

 Run JMeter or other test harness against system

 Observe if the “what” matches the users’ experiences

 Failures in the system should invalidate the run

 Record everything
– Start time, end time, observations, response time, configurations,

date of birth, starsign, basically anything that you might or might
not need

– Use a physical notepad – mouse in left hand

H

Design Patterns Course

30

How Long is Each Run?

 System must be in a steady state
– Issues about test harness that need to be considered

• Beyond the scope of this talk

 System should exhibit the problems experienced by
users

 Can be 30 seconds or 30 days
– Typically an hour

 Burn in the problem

H

Design Patterns Course

31

Analysis
 Hardware

– Carefully examine the output from monitoring and eliminate
underutilised components from the list

– Fully utilised components are bottlenecks

 CPU
– Look at execution profile, such as –Xrunhprof

 Memory
– Look at GC, caching, large DB queries, memory leaks

 IO Wait
– Will prevent CPU from being fully utilised

 If no hardware bottlenecks, look at the JVM layer

K

Design Patterns Course

32

Java Virtual Machine

 Assuming hardware does not show problem

 Heap memory
– Not enough memory in virtual machine

 Lock Contention
– Excessive stop-the-world garbage collection

 If no JVM bottlenecks, look at application layer

K

Design Patterns Course

33

Java Application Layer

 Thread lock contention
– Only thing that you would not have diagnosed by now
– Get thread dump

• See what they are waiting on
• Eliminate the expected

 If you have not found the problem by now, examine
your testing process
– It might help confirming that you have correctly simulated the

users
• Go visit the floor
• Examine run logs

K

Design Patterns Course

34

Bluedragon ThreadDump
Full thread dump Java HotSpot(TM) Server VM (1.4.2_08-b03 mixed mode):
 "RMI ConnectionExpiration-[192.168.0.15:34113]" daemon prio=1 tid=0x0892f658 nid=0x2d7a

waiting on condition [5b86f000..5b86f494]
 at java.lang.Thread.sleep(Native Method)
 at sun.rmi.transport.tcp.TCPChannel$Reaper.run(TCPChannel.java:447)
 at java.lang.Thread.run(Thread.java:534)

 "RMI TCP Connection(902)-192.168.0.15" daemon prio=1 tid=0x41e112b8 nid=0x2d7a runnable

[5ccff000..5ccff414]
 at java.net.SocketInputStream.socketRead0(Native Method)
 at java.net.SocketInputStream.read(SocketInputStream.java:129)
 at java.io.BufferedInputStream.fill(BufferedInputStream.java:183)
 at java.io.BufferedInputStream.read(BufferedInputStream.java:201)
 - locked <0x49978800> (a java.io.BufferedInputStream)
 at java.io.FilterInputStream.read(FilterInputStream.java:66)
 at sun.rmi.transport.tcp.TCPTransport.handleMessages(TCPTransport.java)
 at sun.rmi.transport.tcp.TCPTransport$ConnectionHandler.run(TCPTransport)
 at java.lang.Thread.run(Thread.java:534)

K

Design Patterns Course

35

Bluedragon ThreadDump
 "PingThread-8692809" daemon prio=1 tid=0x081a3058 nid=0x2d7a waiting on condition

[5bda9000..5bda9294]
 at java.lang.Thread.sleep(Native Method)
 at org.exolab.jms.client.rmi.RmiJmsConnectionStub$PingThread.run(

 RmiJmsConnectionStub.java:249)

 "EventManagerThread" daemon prio=1 tid=0x083101f8 nid=0x2d7a in Object.wait()

[5caa9000..5caa9514]
 at java.lang.Object.wait(Native Method)
 - waiting on <0x47aa2800> (a java.lang.Object)
 at java.lang.Object.wait(Object.java:429)
 at org.exolab.jms.events.BasicEventManager.run(BasicEventManager.java)
 - locked <0x47aa2800> (a java.lang.Object)
 at java.lang.Thread.run(Thread.java:534)

 "PingThread-18183604" daemon prio=1 tid=0x08136dc8 nid=0x2d7a waiting on condition

[5cc7f000..5cc7f494]
 at java.lang.Thread.sleep(Native Method)
 at org.exolab.jms.client.rmi.RmiJmsConnectionStub$PingThread.run(
 RmiJmsConnectionStub.java:249)

K

Design Patterns Course

36

Bluedragon ThreadDump
 "RMI RenewClean-[192.168.0.15:34113]" daemon prio=1 tid=0x081a2c68 nid=0x2d7a in

Object.wait() [5ba10000..5ba10594]
 at java.lang.Object.wait(Native Method)
 - waiting on <0x4858a940> (a java.lang.ref.ReferenceQueue$Lock)
 at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:111)
 - locked <0x4858a940> (a java.lang.ref.ReferenceQueue$Lock)
 at sun.rmi.transport.DGCClient$EndpointEntry$RenewCleanThread.run(
 DGCClient.java:500)
 at java.lang.Thread.run(Thread.java:534)

 "BoundedThreadPool0-33" prio=1 tid=0x41ec8710 nid=0x2d7a in Object.wait()

[5ca29000..5ca29594]
 at java.lang.Object.wait(Native Method)
 - waiting on <0x47a5> (a org.mortbay.thread.BoundedThreadPool$PoolThread)
 at org.mortbay.thread.BoundedThreadPool$PoolThread.run(BoundedThreadPool)
 - locked <0x47a520b8> (a org.mortbay.thread.BoundedThreadPool$PoolThread)

K

Design Patterns Course

37

Bluedragon ThreadDump
 "BoundedThreadPool0-32" prio=1 tid=0x5a159ed0 nid=0x2d7a runnable [5c9a9000..5c9a9614]
 at java.net.SocketInputStream.socketRead0(Native Method)
 at java.net.SocketInputStream.read(SocketInputStream.java:129)
 at org.mortbay.io.bio.StreamEndPoint.fill(StreamEndPoint.java:99)
 at org.mortbay.jetty.bio.SocketConnector$Connection.fill(SocketConnector)
 at org.mortbay.jetty.HttpParser.parseNext(HttpParser.java:257)
 at org.mortbay.jetty.HttpParser.parseAvailable(HttpParser.java:192)
 at org.mortbay.jetty.HttpConnection.handle(HttpConnection.java:293)
 at org.mortbay.jetty.bio.SocketConnector$Connection.run(SocketConnector)
 at org.mortbay.thread.BoundedThreadPool$PoolThread.run(BoundedThreadPool)
 - locked <0x47a521f8> (a org.mortbay.thread.BoundedThreadPool$PoolThread)

K

Design Patterns Course

38

Bluedragon ThreadDump
"BoundedThreadPool0-31" prio=1 tid=0x5ad60d78 nid=0x2d7a runnable [5c929000..5c929694]
 at org.mortbay.jetty.HttpGenerator.prepareBuffers(HttpGenerator.java:878)
 at org.mortbay.jetty.HttpGenerator.flushBuffers(HttpGenerator.java:681)
 at org.mortbay.jetty.HttpGenerator.complete(HttpGenerator.java:671)
 at org.mortbay.jetty.HttpConnection.doHandler(HttpConnection.java:388)
 at org.mortbay.jetty.HttpConnection.access$1500(HttpConnection.java:38)
 at org.mortbay.jetty.HttpConnection$RequestHandler.headerComplete(
 HttpConnection.java:598)
 at org.mortbay.jetty.HttpParser.parseNext(HttpParser.java:487)
 at org.mortbay.jetty.HttpParser.parseAvailable(HttpParser.java:196)
 at org.mortbay.jetty.HttpConnection.handle(HttpConnection.java:293)
 at org.mortbay.jetty.bio.SocketConnector$Connection.run(SocketConnector)
 at org.mortbay.thread.BoundedThreadPool$PoolThread.run(BoundedThreadPool)
 - locked <0x47a52158> (a org.mortbay.thread.BoundedThreadPool$PoolThread)

K

Design Patterns Course

39

Bluedragon ThreadDump
 "BoundedThreadPool0-30" prio=1 tid=0x41e2f878 nid=0x2d7a in Object.wait()

[5c8a9000..5c8a9714]
 at java.lang.Object.wait(Native Method)
 - waiting on <0x47a5> (a org.mortbay.thread.BoundedThreadPool$PoolThread)
 at org.mortbay.thread.BoundedThreadPool$PoolThread.run(BoundedThreadPool)
 - locked <0x47a52298> (a org.mortbay.thread.BoundedThreadPool$PoolThread)

 "BoundedThreadPool0-29" prio=1 tid=0x5a4c5650 nid=0x2d7a in Object.wait()

[5c828000..5c828794]
 at java.lang.Object.wait(Native Method)
 - waiting on <0x47a5> (a org.mortbay.thread.BoundedThreadPool$PoolThread)
 at org.mortbay.thread.BoundedThreadPool$PoolThread.run(BoundedThreadPool)
 - locked <0x47a52108> (a org.mortbay.thread.BoundedThreadPool$PoolThread)

 "BoundedThreadPool0-28" prio=1 tid=0x5a4c53f8 nid=0x2d7a runnable [5c7a8000..5c7a8814]
 at java.net.SocketInputStream.socketRead0(Native Method)
 at java.net.SocketInputStream.read(SocketInputStream.java:129)
 at org.mortbay.io.bio.StreamEndPoint.fill(StreamEndPoint.java:99)
 at org.mortbay.jetty.bio.SocketConnector$Connection.fill(SocketConnector)
 at org.mortbay.jetty.HttpParser.parseNext(HttpParser.java:257)
 at org.mortbay.jetty.HttpParser.parseAvailable(HttpParser.java:192)
 at org.mortbay.jetty.HttpConnection.handle(HttpConnection.java:293)
 at org.mortbay.jetty.bio.SocketConnector$Connection.run(SocketConnector)

K

Design Patterns Course

40

Bluedragon ThreadDump
 "BoundedThreadPool0-27" prio=1 tid=0x41e6a640 nid=0x2d7a in Object.wait()

[5c728000..5c728894]
 at java.lang.Object.wait(Native Method)
 - waiting on <0x47a5> (a org.mortbay.thread.BoundedThreadPool$PoolThread)
 at org.mortbay.thread.BoundedThreadPool$PoolThread.run(BoundedThreadPool)
 - locked <0x47a52338> (a org.mortbay.thread.BoundedThreadPool$PoolThread)

 "BoundedThreadPool0-26" prio=1 tid=0x41e693f8 nid=0x2d7a in Object.wait()

[5c6a8000..5c6a8914]
 at java.lang.Object.wait(Native Method)
 - waiting on <0x47a5> (a org.mortbay.thread.BoundedThreadPool$PoolThread)
 at org.mortbay.thread.BoundedThreadPool$PoolThread.run(BoundedThreadPool)
 - locked <0x47a52248> (a org.mortbay.thread.BoundedThreadPool$PoolThread)

 "BoundedThreadPool0-25" prio=1 tid=0x086b1c50 nid=0x2d7a in Object.wait()

[5c628000..5c628994]
 at java.lang.Object.wait(Native Method)
 - waiting on <0x47a4> (a org.mortbay.thread.BoundedThreadPool$PoolThread)
 at org.mortbay.thread.BoundedThreadPool$PoolThread.run(BoundedThreadPool)
 - locked <0x47a4e180> (a org.mortbay.thread.BoundedThreadPool$PoolThread)

K

Design Patterns Course

41

Bluedragon ThreadDump

 According to client, system was idle
– Did not accept any more connection requests

 Let’s go back a few slides…
– Why was HttpGenerator.prepareBuffers() being called?

K

Design Patterns Course

42

Bluedragon ThreadDump
"BoundedThreadPool0-31" prio=1 tid=0x5ad60d78 nid=0x2d7a runnable [5c929000..5c929694]
 at org.mortbay.jetty.HttpGenerator.prepareBuffers(HttpGenerator.java:878)
 at org.mortbay.jetty.HttpGenerator.flushBuffers(HttpGenerator.java:681)
 at org.mortbay.jetty.HttpGenerator.complete(HttpGenerator.java:671)
 at org.mortbay.jetty.HttpConnection.doHandler(HttpConnection.java:388)
 at org.mortbay.jetty.HttpConnection.access$1500(HttpConnection.java:38)
 at org.mortbay.jetty.HttpConnection$RequestHandler.headerComplete(
 HttpConnection.java:598)
 at org.mortbay.jetty.HttpParser.parseNext(HttpParser.java:487)
 at org.mortbay.jetty.HttpParser.parseAvailable(HttpParser.java:196)
 at org.mortbay.jetty.HttpConnection.handle(HttpConnection.java:293)
 at org.mortbay.jetty.bio.SocketConnector$Connection.run(SocketConnector)
 at org.mortbay.thread.BoundedThreadPool$PoolThread.run(BoundedThreadPool)
 - locked <0x47a52158> (a org.mortbay.thread.BoundedThreadPool$PoolThread)

K

Design Patterns Course

43

Addressing the Problem

 Add more hardware
– Often the cheapest solution

– 100% CPU – is it possible to add faster CPU?
• May not always solve the problem

H

Design Patterns Course

44

Java Virtual Machine Tuning

 Configuration
– e.g. heap sizing, hotspot compilers, etc.

H

Design Patterns Course

45

Application Code

 Otherwise, all roads lead back to application
– Implies coding changes

– Expensive, time consuming, error prone
– Need good regression testing

 Well designed code makes changes easier
– DRY (don’t repeat yourself)
– SRP (single responsibility principle)
– Correct design patterns

• http://www.javaspecialists.co.za

H

Design Patterns Course

46

Application Profiling

 Java has built-in profiling tools

 Run the JVM with –Xrunprof

 Other alternatives available from
– http://www.javaperformancetuning.com

H

Design Patterns Course

47

This is the Why!

 Profiling is the measurement that tells us “why”
– From there we can implement the fix

 Run benchmark to ensure problem solved

 Regression test

 Have you reached your performance target?
– If not, start from the beginning and find next bottleneck
– When problem #1 is solved, problem #2 might be gone

• Avoid fixing more than one problem at a time

K

Design Patterns Course

48

Heap Usage after GC

K

Design Patterns Course

49

JoGoSlo Why?

 Discussions with client suggested database caching
– Suspected cached “SELECT * FROM very_large_table”

 Investigation confirmed memory leak

 Troublesome point
– Users claimed application sometimes recovered

 Question: is this from the database interaction or a
memory leak in a long-term temporary object?

 Hypothesis: Memory leak could be from HTTPSession

K

Design Patterns Course

50

JoGoSlo Why?

 HTTPSession timeout correlated strongly with
decrease in memory
– Confirmed with memory profiler

• Output from memory profilers is often very confusing for
large systems

• This additional information helped us filter the memory
profiler

– Bingo!

 The HTTPSession was found to be retaining session
object, due to the improper scoping of Struts Sessions

K

Design Patterns Course

51

Conclusion

 Don’t measure, guess …
– Then call us!

H

Design Patterns Course

52

Dr Heinz Kabutz heinz@javaspecialists.co.za
Kirk Pepperdine kirk@kodewerk.com

Essentials of Java
Performance Tuning

JHUG Athens
May 20th 2006

